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Two-Dimensional Modeling for Lineal and
Areal Probabilities of Weather Conditions

1. INTRODUCTION

The single-point probability of a weather condition is easily estimated from

climatic records. The extension of single-point probabilities to a line or an area
S..is often necessary but difficult to obtain, as in studies of rainfall coverage and

cloud-free lines-of-sight. If the probability is known, say, of 24-hour rainfall

exceeding 10 mm at a single observational point, we must ask: what is the corres-
ponding probability that the same quantity will be exceeded everywhere in a

surrounding area or in some fraction of a surrounding area? This type of clima-
tology is the subject of this paper.

In general, efforts to describe the areal and lineal coverage of weather con-

ditions have been few, and models of areal and lineal coverage have been rare.
In most previous studies, correlation coefficients are the principal object of

investigation, with several notable exceptions. Schreiner and Riedel I collected
rainfall data integrated over areas ranging in size from 26km2 to 2600 km2 , and

-S. have found frequencies of extremes of rainfall as a function of size of the ground
4'.

(Received for publication 11 April 1984)

*':- 1. Schreiner, L. C. , and Riedel, J. F. (1978) Probable maximum precipitation
estimates United States east of 105th meridian, Hydrometeorol. Report

"-. (No. 51), NQAA-NWS-HR-51.
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covered. Other studies, by Court, 2 Roberts, 3 and Briggs 4 have linked the rain

in a circular area to the central single-station amounts by idealized models.

Jones and Wendland 5 used data from arrays of instantaneous-precipitation inten-

sity recorders to obtain line averages of the frequency of exceedence of thresh-

old precipitation intensities. Gringorten 6 describes Model B, which was devised

by a method that produces a simulated horizontal field, stochastically, without

recourse to physical laws or dynamics. Many such random fields were genera-

ted, then summarized, and the results graphed so that the probabilities of frac-.

tional coverages of events along lines or in areas of different sizes could be

estimated.

Theoretically, an abundance of data at an abundance of stations in a small

area, with a rapid succession of observations, could provide the kind of areal

climatology that we seek. Practically speaking, such abundance, if it really

existed, would confront us with the enormous task of mapping and recording

events to provide a history of the weather before summarizing it statistically.

Since such a climatology would be regionally dependent and applicable only to the

weather element being studied, we would have to repeat the task for each new

area and/or meteorological parameter of interest. These are the difficulties we

wish to overcome by modeling. We want to be able to simulate a sequence of

changes in the weather covering an area whenever and wherever we choose. In

- * addition, we want, ultimately, to provide usable statistics of areal coverage,

including correlation coefficients and probabilities of fractional cover by any

"- type of weather condition, such as cloud cover.

A model of the areal extent of the weather can resemble a Markov process,

d.. but it cannot be one. In a Markov model, a future event is dependent upon the

present state of the weather, and its likelihood is not directly affected by previous

events. In a horizontal picture, any one point is surrounded in all directions by

2. Court, A. (1961) Area-depth rainfall formulas, J. Geophys. Res. 66:1823-1831.

3. Roberts, C.F. (1971) A note onthe derivation of a scale measure for precipi-
N.e.tation events, Mon. Wea. Rev. 99:873-876.

*i 4. Briggs, J. (1972) Probability of aircraft encounters with heavy rain, Meteorol.

Mag. 101:8-13.
5. Jones, D. M.A., and Wendland, W. M. (1983) Statistics of Instantaneous Rain-

f R AFGL-TR-83-0056, AD A130089.

6. Gringorten, 1.1. (1979) Probability models of weather conditions occupying a
line or an area, J. Appl. Meteorol. 18:957-977.
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= p

an infinite number of points. Consequently, there must be some underlying re-

straint on the conditions surrounding that point, similar to, but still different

from, a Markov process.

An effective model of areal coverage will produce a simulated horizontal

field, stochastically, without recourse to physical laws or dynamics, as in

Gringorten's Model B. 6 In our approach, we use such stochastic, or Monte

Carlo, simulation to obtain graphical solutions. We make two major improve-

ments over Gringorten's original Model B approach. First, we have fitted the

graphs by equations, an accomplishment that is a major step in areal and lineal

probability modeling. It is now possible to obtain solutions quickly from the

computer instead of reading them from graphs. Second, we have replaced Grin-

gorten's Model B with a more recent development, Boehm's Sawtooth Wave model

(BSW), as described in Section 3. The two primary reasons for choosing BSW

over Model B are: First, the spatial correlation of the BSW output is closer to

reality than that of the Model B, and, second, the new model requires the gener-

ation of only a few dozen random numbers per map instead of many thousands,

as required for Model B. This increase in model efficiency has enabled the

generation of a greater sampling size, given the same computer limitations.

2. EQUIVALENT NORMAL DEVIATE (END)

Before introducing the model, we must examine the concept of the equivalent
normal deviate (END). Figure 1 is a sample plot of the cumulative frequency of

a weather element, in this case of visibility (V) at Bedford, Mass., in January,

at noontime. The X's mark the frequencies that have been summarized from 20

years of data. They show, for example, a 2 percent frequency for V less than

one-fourth of a mile, 7 percent for V less than 1 mile, and 38 percent for V less

than 10 miles, or, alternately, a 62 percent frequency of V greater than 10 miles.

Alongside the scale of cumulative probability, we can plot another scale of the

equivalent normal deviate (y). The correspondence of y to F(y) can be found in

nearly every textbook on statistics. Using either a diagram such as Figure 1. or

equations, we obtain a transformation of the variable (V in this case) into its END

(y), or vice versa, through the cumulative probability of the variable (V).

Our models are derived using the ENDs. We then transform the results to

the appropriate weather variables.

91
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3. BOEHM'S SAWTOOTH WAVE MODEL (BSW)

The present model was devised by Major Albert R. Boehm, USAFETAC,

Scott AFB, Ill. He has given it the descriptive name Sawtooth Wave. The

following is a brief overview of the model:

A cross-sectional view of the sawtooth we.ves is shown in Figure 2. The

waves are stationary. The lefthand edge of each wave has zero height; the right-

9, hand edge has a height of unity. At any point in between, a wave has a uniformly

'-a distributed height (H) between 0 and 1. The goal is to use the sawtooth waves to

generate fields of the normally distributed values, ENDs, which have a mean of

0 and a variance of 1.

Now consider a formation of sawtooth waves in horizontal space, uniform in

wavelength (A), such as the one shown in Figure 3. Each diagonal line represents

the leading edge of a wave, with the height of each wave increasing toward the

-- upper right. The wavelength is a parameter of the model, which, in our climatic

fields, measures several hundred to several thousand kilometers. For deriva-

- tion, the wavelength is made the unit of distance. The positioning of the wave

10
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formation about the u, v axis and point of origin (0, 0) is determined by two numbers.

One, the angle 0, gives the orientation of the wave formation (0 .<2ir); the

other, Y, determines the wave phase at the point of origin (04Y<1). Once the

wave formation has been positioned, there is a wave height (H) at each point (u, v).

H is between 0 and 1.

Simulation is accomplished by randomly choosing many (N) pairs of A and Y

values, thereby positioning N random wave formations. Then, at each (u, v),

there are N values of H(u, v). A number y(u, v) is calculated at each (u, v) from

the sum of the N values of H(u, v) as follows,

y(uv) Hn(u,V) - -N-). (1)

'4 As N increases, by the central limit theorem, the values of y(u, v) approach the
'4 normal distribution, and hence y becomes an END. A sample of a field of ENDs

generated-by BSW is shown in Figure 4. The isopleths are labeled in terms of

y = -2(1)1.

-" 4. CORRELATION AND SCALE PARAMETER

An analytical solution has been found for BSW for the correlation coefficient

p(s) between points separated by distance (s), in units of the wavelength:

P(s) = 1 - (-) s + 3s2 for 0<s<l (2)
7T

t- (1 )s +3s2
7T

+(24/7r) [cos'l(1/s) vsi-1J for l<,s c2.

The derivation of Eq. (2) is given in Appendix A. The graph.of P (s) versus s is

shown in the top half of Figure 5. For our purposes, we shall rarely need to

consider distances of more than one or two wavelengths. The distance s, then,

will usually be a number between 0 and 2, given by

s = s'/A, (3)

where s' is the measured distance (kin) and A is the wavelength (km). The top

' graph of Figure 5 compares favorably with the bottom graph, which is an example

of the spatial correlation function of the winter surface temperature between

12
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Figure 4. Example of Horizontal Field of ENDs Generated Stochastically by the
BSW Model

stations from a few kilometers to several thousand kilometers apart taken from

Bertoni and Lund. This is an analysis made from actual observations. Correla-

tion is high for short distances, but drops monotonically to zero and becomes

negative at substantial distances between stations. Bertoni and Lund found that

7. Bertoni, E.A., and Lund, I.A. (1964) Winter space correlations of pressure,
temperature and density to 16 km, Environ. Res. Papers (No. 75),
AFCRL-64-1020, AD 611002.
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Figure 5. Distance Versus Correlation Coefficient for BSW Model
(Top GraLh) and for Winter Surface Temperature From Bertoni
and Lund (Bottom Graph)

this pattern of spatial correlation holds for temperature at different levels of the

atmosphere up to at least 16 km, as well as for pressure and density at these

levels. Eq. (2) yields p(s) equal to 0.99 over a distance of 1km, if A--" 340 km.

This distance has been called the scale distance, r (kin), and can be used inter-

e•angeably with the wavelength, A (krn) as the parameter of the model. The ratio

between the two alternatives is a constant, chosen for this paper to be 1/340. Thus

r = (A/340) km. (4)

* 14
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5. LINEAL AND AREAL COVERAGE

Analytical solutions for the probability of the maximum condition in an area

or a fraction of an area, or a line or fraction of a line, have not yet been found.

Instead, we have obtained approximate solutions by Monte Carlo simulation. The

following is a brief description of our procedure for the areal case.

Consider a square area of side s (in units of the wavelength) containing a

field of ENDs generated by BSW, such as in Figure 4. At some point in the area
2

(s ) there will be a maximum value of y for the entire field. Also, there will be a

minimum of the highest 10 percent of values, a minimum of the highest 20 percent,

and finally the minimum for the entire field. This can also be stated in terms of

the fraction (F/10) of the area covered: 10 percent, for which F = 1; 20 percent,

for which F = 2, etc. Our goal is to find the cumulative probability distribution

for each of these minimum or threshold values [y(F, s)]. A large number of

stochastically generated maps will provide a frequency distribution that will

approach the true probability distribution P(y; F, s) asymptotically as the number

of maps is increased.

We conducted this kind of Monte Carlo simulation for 12 square areas of

different sizes, where the linear side of each square, in units of wavelength, was

s = 2"/A, (5)

where z -1(1) 8. For this exercise, we chose A to be 340 km, so that p(s)

•. would be approximately 0.99 over a distance of 1km (see Section 4). For each

square, we generated 25, 000 maps, and surveyed each map for the threshold

'" values y(F, z). From each map, we found the (F)th decile of y(F, z) in the area
(s2) for F = 0() 10. From all maps collectively, we found the cumulative frequen-

cies for the 1 9 values of y(F, z) between -4. 5(0. 5) 4. 5, thus estimating the cumula-

tive probabilities, P(y; F, z) for each of the 11 values of F and each of the 10 values

of z. We drew curves to show P (y; F, z) as a function of y(F, z) and z, one graph

for each value of F. The graphs for F = 0 through F = 5 are shown in Figures 6-11.

Because the Monte Carlo method yields only an approximation of the true answer,

we had to smooth the raw simulation data when drawing the curves. Smoothing

was especially necessary at the extremes of the distributions, where very high and

very low probabilities made the approximations noticeably less reliable because the

simulations were limited to 25, 000 maps. A typical example of the extent of the

smoothing is shown in Figure 6a for F = 0, where the dots represent the raw data.

In Figures 6b-ll, the crosses do not represent the raw data, but represent approx-

imations to the smoothed curves made by an empirical solution that will be de-

scribed in Section 6. On the graphs, the horizontal axis has a uniform z-scale, and

15
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is therefore a logarithmic scale with respect to the area. The vertical axis is

uniform in the END (y) of the cumulative probability (P). The graphs for F : 6

through F = 10 are not shown because they are merely the inverted mirror images

of the graphs for F = 4 through F = 0, respectively. For inverted mirror images,

one simply reverses the sign of y(F, z) and takes the complement of P(y; F, z).

Each graph shows the value of P within the limits 0.0001 5 P(y; F, z) ! 0. 9999.

We obtained graphs of the probability of the maximum condition along a line

or fraction of a line using the same procedure described above, with model values

simulated along a line instead of over an area (Figures 12-17).
Thus far, this procedure has produced a model that can be used to estimate

A' the probability that a certain weather condition will cover a given area or given

length, or a fraction of an area or length. The input includes the single-point

cumulative probability of the weather element (P' 0 ), the area or length of concern

(A km 2 or s' kin), and the parameter: either the scale distance (r km) or the

wavelength (A km).

The scale distance, by and large, is a more meaningful parameter than the

wavelength, although the ratio between the two is constant. In results obtained

with New England 24-hour precipitation, 6 we found that the scale distance equals

9 to 10 km. For radar echoes, on a PPI-scope, the scale distance ranged from

1 - 3 km in summer to 2.5 - 4.5 km in winter.

In the graphs (Figures 6 -17), the abscissa is in terms of z, where

z = ln(J/A/r)/ln 2 for areas (A), (6a)

z = ln(s'/r)/in 2 for lines (s'), (6b)

from which we obtain

r = AI 2z (7a)

r - s'/2 z. (7b)

To illustrate the operability of the graphs, suppose we examine a weather
condition, such as visibility (V) less than 10 miles. For Bedford, in January at

noontime (Figure 1), the single-point climatic frequency of visibility over 10 miles

- is P 0  0.62. The cumulative frequency is P' = 0.38, for which the END is00
Y0 = -0. 30. Each curve on the graphs corresponds to a y0 - value. For an area

of 1000 km 2 and scale distance of, say, 4km, Eq. 6a gives z - 3. When the

curve (interpolated) for y0 = -0. 30 is followed to the vertical line for z = 3 on

Figure 6b, for example, it gives the probability P(V < 10; Ff0, z=3) = 0.29, as

23'
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shown by the dashed lines in the figure. Detailed instructions on practical applica-

tions of the graphs are given in Section 7.

6. EMPIRICAL ALGORITHMS

The graphs of P(y 0 ; F, z) for the areal and lineal cases were fitted to empiri-

cal equations in terms of y0 , F, and z as follows:

y' = a + fl +V + 6 (areal) (8)

y' = )71 + (172 - )71)(F - INT(F)) (lineal) (9)

where y' denotes the END of P(y 0 ;Fz). The terms a, 6 , and 6 are given

in Table 1 and the associated constants in Tables 2 and 3; the term ?I (i = 1 or 2)

'. is given in Table 4, and the associated constants in Table 5. When F > 5, then
P(y 0 ; F, z) = 1 - P(-y 0 ; 10-F, z). In addition, in the areal case only, when z > 7,

if F i INT, then y' = y'(INT(F)) + (F-INT(F))(y'(INT(F) + 1) - y' (INT(F))).

These solutions are valid only within the bounds of the graphs, and therefore in-

clude the following restrictions: I y' I 3. 72, 1y I r. 4. 7 and -1 r z 8.

These formulas represent a major step in areal and lineal probability model-

ing, for it is now possible to obtain solutions with a computer as opposed to find-

ing them in a graph. Previously, in the case of Gringorten, 6 only the graphs

were available. Note, also, that the formulas allow for solutions for any value of

F instead of just the integer values, as with the graphs. In other words, the

empirical solutions interpolate between graphs, so that it is possible, for example,

to use the model for eighths of cloud cover as well as tenths.

The goodness of the fit of these equations to the analyzed graphs can be deter-

mined both visually and objectively. The visual comparison is depicted in Figures

-, 6b-ll for the areal graphs and Figures 12-17 for the lineal graphs, corresponding

to F = 0 through F 5 (0/10 through 5/10 areal/lineal coverage). The empirical

formula was solved at regular intervals of z for the values of y0 depicted by the

solid lines. The solutions were plotted as shown by the crosses. The goodness

of thefitof Eqs. (8) and (9) for graphs F = 6(1)10 is the same as the fit for graphs

F = 0(1) 4, since the former are upside-down mirror images of the latter. Visu-

ally, the fit is excellent. It is difficult to tell the difference between the original

analyses and the computer solutions. Certainly, the error between the curves

*INT is a function that acts to truncate any number to its integer value.
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Figure 12. BSW-Model Probability Estimates for 0/10 Lineal Coverage for Length
(s) Corresponding to z =In s /In 2. The lines represent the smoothed anialyses, each%
corresponding to a single yo -value, and the crosses represent the computer solutions
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Figure 15. 3/10 or Less Lineal Coverage for Length (s) Corresponding to z

In s /In 2. The lines represent the smoothed analyses, each corresponding to a

single yo-value. and the crosses represent the computer solutions
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a.

Table 1. Expressions for Each Term of Eq. (8)

Term Expression Conditions

Ot Yo + (' 006e 8z . 003)(F-5) -1 S z • 1.0

n-1
S(.9981+ .0011e'89z)y 0 + (an+bneCnZ)(F+n-6) - (a+be'i z ) 1.0< zs 7

n = 5 - INT(F)

9-5.5s z s 7 and
S (.0017e 95z 3129)(. 75-. 3Yo)(1-25F) 0 r F r 4 and

y a 2.5

Z WF) + f(F)eg(F.Yo) R + (

j=1 3

7.0< z s 8.0

6,R. = z-7 (when m = 1) d(F) = -d(F).

= .5 (m 2 and j 1) f(F). = -f(F). (F=5 and Yo < 0 )

= z-7.5 (m = 2 and j = 2) g(F). = -g(F).
m a INT(z-5.5) _

Table 2. Constants for Eq. (8) (With Table 3)

n an b c

0 .0000 .0000 .00

1 -. 0071 .0086 .53

2 -. 0205 .0097 .52

3 .0229 .0045 .64

4 -. 0517 .0224 .45

- 5 .0260 .0087 .71

.

.
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Table 3. Constants for Eq. (8) (With Table 2)

m=l m=2

mF d(F)m  flF)m g(F) d(F) m  f(F)m g(F)m

0 0. 1420 -2. 4090 -. 44 0. 1908 -3. 8406 -. 56
1 1.0686 -2.2854 -. 46 1.8710 -4.2412 -. 55

2 1.9440 -2.7842 -. 41 3.0540 -4.4752 -. 39

3 2.2560 -2.7356 -. 40 3.3960 -4.5228 -. 50

4 2.0328 -2.2910 -. 41 2.0690 -2.5702 -. 75

5 1.2356 -1.2300 -1.30 1.6124 -1.5434 -1.51

Table 4. Expressions for Terms of Eq. (9)

2
17 i A + By0 + CyO

A =a +bneCnZ C =hn+qne n z z > 6

B d n + fneegn 1
z  0 zr 6

n = INT(F) for i= 1

n = INT(F) + I for i = 2

Table 5. Constants for Eq. (9)

n a b c d f g h q r
-n n nn n nn 2

-4 -3 -0 .0300 -.0366 .51 1.0049 7.44x10 .82 8.06xO -  -1.44x10 5  1.02

1 .0346 -.0366 .47 1.0034 5.08xO "4  .87 1.89x10 3  -3.77x10 7  1.46

.0272 -.0283 .46 1.0054 2.77xl0 .95 2.69x10 3  -2.48xi0 8  1.81

3 .0207 -.0213 .44 1.0058 2.74x!0 "4  .95 -8.76x10"4  -2.34x10- 12  2.93

4 .0096 -.0103 .44 1.0021 3.72xI0 4  .91 -2.04xlO -7.21x10 17  4.17

5 .0000 .0000 .00 1.0022 3.53xi0 4  .92 .0000 .0000 0.00
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. i (which are only approximations to the true solutions) and the formula values is no

greater than the human error that can be expected from reading the graphs.

".'.'.'This conclusion is confirmed objectively by the root mean square (rms)
errors calculated in ENDs between the computer solutions and the Monte Carlo

, " values at intervals of z = -1 (1) 8. The rms error was broken down by z because,
, ,'q as a whole, Eqs. (8) and (9) do better for small z than for large z. The results

~are shown in Table 6. For the most part, the rms errors are small, less than

" "0. 03. However, even the largest rms error of 0. 100 at z = 8 areal is not too

large for our purposes, since the benefits of using the automated method far out-
iy' ' -: , weigh the slow, error-prone process of reading from graphs. The extra crosses

, of Figures 7 and 13 are the empirical solutions to the curves for yo0 0. 75, 1. 25,

and 1. 75. These results show that Eqs. (8) and (9) not only fit the curves well,

:.. but also do a good job of interpolation.

i','.'.Table 6. Root Mean Square Errors (rmse) Between the Computer Solutions and
, Analyses, Calculated in END Values

Z -1 0 1 2 3 4 5 a 7 8

.(rmel .000 .008 .015 .016 .017 .024 .028 .045 .066 .100

"r (ine .012 .011 .011 .015 .016 .019 .021 .026 .028 .019

' '. 7. APPLICATIONS

The single-point probability (P0 and the corresponding END (y0) of a

'.o

weather element (X) is easily obtained or estimated from the climatic records,

-.. either through equations or graphs, as explained in Section 2. In all applications,

:' €..it is assumed that such single-point information is available as input.

,.. Two types of application are recognized. In one type, the purpose is to find

-'' the probability of the fraction (F) of areal or lineal coverage. The input informa-
-- tion in this case consists of the single-point probability (P0), the areal size

"--(A km 2) or the line length (s' km), and the parameter, scale distance (r km). In
the other type of application, the parameter size (r kn ) must be determined,

given, this time, the probability of the fraction (F) of areal coverage for the

given area (A) as well as the single-point probability (P0). By compute arlp-

by-step procedure for the first problem is given in Appendix B, and, for the

secn a pwole, s (8)pandi 9 Cobte. o salzta o arez h eut

a w aFor the model to be effective, the scale distance should be conservative or

stable. Thus, it is important that the area or line under consideration be limited

-

wefh33
f F e .6 w

an .7.Tee eut hwtatEs 8 n ()ntol i.tecre el

'. ,..-: .. but-also do a good.-.-.-,..-.job...- ...-of •, interpolation.'".". "." " " ""- - '."," , ".
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to a region where the spatial correlation is uniformly stable, dependent upon the

separation of stations. Otherwise, r will vary, and a single z-value will not be

truly representative of a particular line or area. Since r is the distance over

. which p 1 0.99 (when A = 340), an increase in r indicates an increase in the
4" horizontal persistence of a weather element. Seasonally, for clouds and precip-

Jitation, r is largest in winter and smallest in summer; diurnally, it is largest

around midnight and smallest around midday. In practice, for these elements,

r ranges from about 0.5 to 10 km. If r = 0.5km, then z = 5 corresponds to a

square area (or line segment in the linear case) whose side is 16 km, and z = 8
corresponds to an area whose side is 128 km. If r = 10 km, z = 5 represents an

area of (320 ki) 2 , and z = 8 an area of (2,560 km)2 .

*The graphs (Figures 6-17) can be used to provide the probability of exceed-

ing a threshold value x in an area or along a line segment. In other words, the

0/10 areal graph (F 0) gives the probability of exceeding x nowhere in A, the

1/10 areal graph (F = 1) gives the probability of exceeding x in no more than 10

percent of A, and so on. The last graph of the areal series (F = 10) is best

understood in terms of the complementary probability, that is, the probability

of exceeding x everywhere in A.

7.1 Example for Determining the Probability of a Fraction of Areal Coverage

Let us say that the cumulative probability of 10 mm of rain in 24 hours over

a certain rain gauge (in other words, the single-point probability of experiencing

an event of 10 mm of rain or less) is P 0 . Suppose r is also given. What is the

probability that an entire area (A) surrounding the rain gauge will have a maxi-

mum rainfall of 10 mm? Here we have a problem involving the probability of ex-

ceeding x (10mm of rainfall) nowhere in A, and thus the 0/10 areal graph is used

(Figure 6b). The values for A and r define the value for z.

To solve the problem graphically, convert P0 ' to its corresponding END

value (y0 ) and follow the appropriate y 0 curve to its intersection with the z-value.
The probability P is read on the left-hand scale. (See the example at the end of

Section 5). Suppose, for example, P 0 ' = 0. 31. The corresponding END value
2* is y0 = -0.5. Further, suppose r = 10km and A = 102, 000 km , yielding z = 5.

Then, using Figure 6b, find the intersection of the curve y0 = -0. 5 with z = 5.

From that point, move leftward, parallel with the z-axis, until the intersection

with the END scale is reached. The answer is the P value at that intersection,

in this case, 0. 080. Therefore, the probability that the 24-hour rainfall will not

* exceed 10 mm anywhere in A is less than the probability that it will not be excee-

ded at the rain gauge only, or, in other words, the probability that a rainfall

amount somehwere in A will exceed 10 mm increases as A increases. When
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using Eq. (8) (Appendix B) to find the solution, set r = 10 km, A 102, 000 km 2

P0 ' = 0.31 and F z 0. The answer will be y' = -1.39, for which P(y; F,z) = 0.083.

0.083.
Continuing with this example, what is the probability that the maximum rain-

fall will be 10 mm in 40 percent of A? Now the problem is the probability of ex-

ceeding 10 mm of rainfall in 60 percent of A. Thus, F a 6, and the graph of 4/10

areal coverage (Figure 10) will be used, since, as described earlier, it is the in-

verted mirror image of the 6/10 areal graph. Therefore, find the intersection of

the curve "Yo (for this example, 0. 5) with z - 5, and move leftward to intersect the

P-scale. The answer is P a 0. 66, which corresponds to P(y0 ;F, z) - 1-0. 66 a 0. 34.

Using Eq. (8), simply set r 1 10, A - 102,000km2 , P 0 ' a 0.69, and F a 4. The

equation will give a probability of 0.66, and the answer is 1-0.66 a 0. 34. Appen-

dix B is written to accept P 'u 0.31, F * 6 and yield probability directly.

The illustrations so far have been to find pro6ability, given y0 , F, and z.

* . In these cases, the use of Eqs. (8) and (9)is fairly straightforward, requiring only

simple computer programming. The solutions are unique and can be calculated

directly by simply plugging in the appropriate values. There are times, however,

when it will be necessary to calculate z, given P 0 , F, and P(y0 ; F, z), such as

inthe case of determining the scale distance. Two difficulties arise here because

Eqs. (8) and (9) are nonlinear in z. First, z cannot be solved directly by these

equations, but must be approximated using iterative methods. Secondly, instead

of the solution for z being unique in all cases, there are cases where two solu-

tions or no solution can exist. Let us look more closely at each of these diffi-

culties.

The first difficulty is simple to overcome because many numerical methods

already exist for approximating solutions to a high degree of accuracy. They

should be available from any good textbook on numerical analysis. Appendix C

describes a separate computer program or subroutine to compute z.

The second difficulty can be illustrated graphically by looking at Figure 7.

Suppose y0 = 2. It is easy to see by the shape of this y0 -curve that P(y0 ; F, z)

can be such that two, or one, or no solution in z exists. Most of the time,

however, there will be a unique solution. When there is not, then the procedure

(Appendix C) can be made to yield the first, and smaller, estimate of z. Gener-

ally, it will be advisable to base a single estimate of z on the average of several

algorithmic solutions for z. The final value of r should be based on the average

o %' of the z-values. Alternatively, the final value of r may be calculated by deter-

mining an r for each of the algorithmic solutions of z and taking the geometric

mean of the r-values. Both methods yield identical answers.
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7.2 Example for Determining Scale Distance. r

To illustrate the procedure for calculating r, we take an example from
6

Gringorten, and make appropriate changes for converting to the BSW-model and

the computer solutions. The monthly publication Hourly Precipitation Data of

es the National Climatic Center lists nearly 100 stations in New England that report

precipitation amounts hourly. We limited the study to these stations, and sur-

* veyed the rainfall data for the maximum 24-hour totals for all stations for 21

* .*Januaries (1952-72). We sorted the maxima to obtain estimates of the cumulative

probability distribution (Po ). Six widely scattered stations (Burlington, Vt.;

Caribou, Me.; Boston, Mass.; Portland, Me.; Hartford, Conn.; Pittsfield, Mass.)

were used to establish the single-point cumulative climatic probability distribu-

tion (P ). The climatic frequencies are assumed uniform throughout New England
c

",*' for the purpose of this exercise, and P represents the single-point probability., % C

%t The estimate of the scale distance for New England precipitation in January

was made by using Eq. (7a) to calculate a scale distance (r for each of eight

thresholds of precipitation, and then taking the geometric mean of those values

to obtain r. Since the area of New England is already known (A = 172, 294 km2,,

we only need to find z for each precipitation category in order to use Eq. (7a).

This is done using the present model. We found the frequency of the maximum

precipitation amounts that were exceeded nowhere in the given area. Thus,

F = 0, and, since this is the areal case, we use Figure 6b. As already men-

tioned, P c represents the single-point probability; therefore, the END value c

corresponds to yo in the model. Pm represents the probability for the area

under question, and corresponds to the P(y0 ; F, z) of the model, meaning

Ym = y'. Thus, the intersection of the y c-curve with P = 0.128 locates the

appropriate z-value. For example, for the first precipitation threshold, "none

or trace, " Pc = 0.639, which becomes yc = 0.36, and Pm = 0.128. Going now

., to Figure 6b, find Pm on the left-hand scale and move toward the right, parallel

3to the z-axis, until the intersection with the appropriate curve for yc is met.

This intersection occurs at z = 6.0. Plugging z = 6.0 and r = 415.1kn into

Eq. (7a), we obtain r = 6. 49 km. Using the automated method (Appendix C), when
.7 2

- we set P 0 ' = 0.639, Pm = 0.128, A = 172,294km , and F = 0, we obtain z

6.01 and thus r = 6.44km.

Table 7 gives the results of applying Appendix C to the New England January

24-hour precipitation for each of the eight thresholds of rainfall amount. The

table shows the single-point climatic frequency and the frequency of the maximum

in each of four areas of increasing size, and the resulting estimates of scale
distance. The estimates vary widely, as might be expected, because of the

collective nature of the rainfall data for areal coverage. Nevertheless, the mean
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Table 7. New England January 24-h Precipitation Frequency Distributions (Poo)
at a Single Station and the Frequency Distribution (P) of the Maximum 24-h
Precipitation in Successively Larger Areas, With Resulting Estimates of the
Parameter: Scale Distance (r kin)

Amt Point Area 1I Area2 2 Area 3 ra
S.( (Mm) Frequency 2158km. 37. 455k, 86.-377km 172.294km

Po P P p 'P P '

r.Trace .639 .389 6.44 .362 7.46 .161 5.28 .128 6.44
(.398) (.335) (.223) (.127)

.

r.2.5 .787 .583 6.69 .564 8.04 .400 6.72 .359 8.38
(.582) (.520) (.399) (.274)

s.5 .853 .720 8.32 .704 9.98 .586 8.32 .545 10.35
(.683) (.628) (.514) (.386)

!g10 .921 .802 6.44 .786 7.52 .724 8.02 .692 9.99
'..(.805) (.765) (.675) (.563)

f.15 .954 .856 5.37 .844 6.29 .801 7.40 .776 9.22
(.875) (.846) (.779) (.691)

s ~20 .973 .9008 4.89 .888 5.66 .855 6.72 .836 8.38
(.9205) (.900) (.852) (.787)

-. ei c25 .989 .9253 3.14 .9192 3.86 .9023 4.88 .890 6.22
(.964) (.954) (.929) (.893)

s-50 .9989 .9914 3.57 .9883 3.98 .9821 4.09 .9791 5.22
(.9953) (.9940) (.9906) (.9848)

Overall geometric mean r = 6. 37 km

The bracketed figures are the probability estimates based on a single estimation of the
scale distance: 6.37(km.

(geometric) of all the scale distances, r = 6. 37 kin, when used with Appendix B.

yielded the probability estimates shown in the brackets (Table 7). The 100-station

frequencies are plotted in Figure 18 at the X's, and the BSW-model probabilities

are shown by the curves for the eight maxima of precipitation.

If the results, by the model, are viewed as smoothed corrections to the

Sfrequencies provided by the data, then one or two surmises might be made. The

probability of no rain in an area is well estimated by a 21-year survey of some

hundred stations in New England. The probability of light or moderate rainfall

(2. 5 - 20 mm), however, tends to be underestimated by' the records, suggesting

that greater maxima would have been obtained if there had been more reporting

stations. On the other hand, the heavy precipitation, such as 1 or 2 inches (25

or 50 mm) of rain, corresponding to 10 or 20 inches of snowfall, might have

occurred a little more frequently than expected in the 21 Januaries of the record.

37

m.

-. ' (. 875) -:. 46) . 779) (. 691



Y (N/0, 1)
.9999 .0001

.p ~.999 .001
.998 3

.995
99 + +.01

.9 2 .05

+ + .3

+ + .4
.50 0.5

.4+ .6

-~ .7

.20- .8

.10 .9

.05 .95

.02--2 1 .98

.01 .99

.005

-01 -35 .999
20,000 40,000 60,000

.0001 .9999f I

AREAS 1 2 3 4

k M2

-Figure 18. The Plot of the Data of Table 7: Probabilities of Maximum 24-h preci-
pitation in an Area Versus Areal Extent
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In all of New England, precipitation exceeding 2 inches occurred on 13 days to

give the 2 percent frequency. The model estimates 1. 5 percent frequency, or

nine such days in January in a 21-year period. The large scale distance ( r =

6. 37 kin) indicates that New England winter precipitation patterns have strong

horizontal persistence, as you would expect.

7.3 Modeling Areal and Lineal Cloud Cover

We present an example of areal and lineal cloud cover to illustrate the model

application with respect to fractional cloud cover. Initially, we must make two

important assumptions. First, we adopt the mean sky-cover as the probability

of a cloud presence vertically above a single point (P 0 ). The no-cloud probability
then becomes P0' = 1 - P0. Second, we assume that the celestial dome, as seen

by the weather observer, has a radius of 27.8 km. This translates into a floor
%; 2

space of areaA = 2424km

Table 8. Cloud-Cover Statistics at Bedford, Mass., January, 1200-1400 LST,
Based on RUSSWO Data of 1946-1967

RUSSWO Data Cumulative

Sky Cover Frequency Sky Cover Frequency Z

Clear .155 0.5 .155 4.64

1 .043 1.5 .198 4.82

2 .049 2.5 .247 4.62

3 .041 3.5 .288 4.39

4 .041 4.5 .329 3.29

5 .031 5.5 .360 NA

- 6 .027 6.5 .387 4.87

7 .044 7.5 .431 4.85

8 .060 8.5 .491 4.92

9 .046 9.5 .537 4.50

Overcast .462 z=4.54 r =2. llkm
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Table 8 shows, in the first column, the climatic summary of the frequency

of cloud cover for Bedford, Mass.. January 1200-1400 LST, as taken from the

Revised Uniform Summaries of Surace Weather Observations (RUSSWO).

RUSSWOs are prepared by the USAF Environmental Technical Applications Center.
They report the observations of total sky cover in tenths, from clear to overcast,

and show the percentage frequency of each tenth. These values represent an aver-

age of the three hourly frequencies (1200, 1300, and 1400 LST). We converted the

data into cumulative frequencies, as shown in the third and fourth columns of

Table 8. To do this, we assumed that the categories of tenths represent equal in-

tervals, such that 0 tenths includes all cases from 0 to 0. 5 tenths, 1 tenth all cases

y from 0. 05 to 1. 5 tenths, and so on, until, lastly, 10 tenths includes all cases from

9.5 tenths to 10 tenths. From the RUSSWO, we obtain the mean sky cover,

P 0 = 0.66, and P 0 ' = I - 0.66 = 0.34.

We now have enough information to calculate z-values. For example, the

third row of Table 8 gives F = 2.5 and P(y 0 ; F, z) = 0. 247. With P 0 ' = 0.34,

using Appendix C, we obtain ' = 4.62. We calculated the z-values for each

category of cumulative frequency (Table 8). We then estimated the mean z-value
2as T = 4.54. Using Eq. (7), with A = 2424km , we obtain r = 2.11km. With the

scale distance and Appendix B, we can now make the model estimates of the

fractional cover. Table 9 shows these estimates in the middle column for comp-

arison with the RUSSWO frequencies. The rms difference between the sets of

values is 0. 015. The solid curve labeled "sky dome" in Figure 19 is the BSW

model estimate, and the X's are plots of the RUSSWO data.

The model can be used, further, to obtain the probability distribution of

fractional cover for areas both smaller and larger than the celestial dome. The

first column of Table 9 shows the estimates for a small area (100 km 2), reveal-
ing that the likelihood of all-clear (left-hand scale) of Figure 19 and full-overcast

(right-hand scale) increases, and the likelihood of partical cover decreases. For
2

a much larger area, 100, 000 km (third column, Table 9), the reverse is true.
Figure 19 illustrates that the likelihood of all-clear and overcast vanishes with in-
creasing floor space. Similar results are obtained for cloud presence along a

line of travel (Table 10), using Appendix B and the same Bedford, Mass., data

(January 1200-1400 LST).

8. SUMMARY ...ND CONCLUSIONS

Empirical equations were developed for determining the probabilities of

areal and lineal coverages of weather conditions, making it possible to obtain

solutions quickly from a computer. Point probabilities of weather conditions
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Figure 19. Total Cloud Cover at Bedford, Mass., January, 1200-1400 LST

41



....
°  

.
•

. . . . . . . . .

Table 9. BSW-Model Probability Estimates of the Cloud Cover, as
a Function of the Floor Area, for Bedford, Mass., January, 1200-
1400 LST, Compared With Table 8

Cumulative Frequencies

Sky Cover 100 km 2  2424 km 2  100, 000 km 2

(Tenths) (Celestial dome)

0.5 .298 .170 .001

1.5 .312 .220 .015

2.5 .321 .255 .051

3.5 .330 .286 .121

4.5 .336 .316 .215

5.5 .344 .348 .313

6.5 .350 .380 .459

7.5 .359 .417 .640

8.5 .369 .461 .815

9.5 .384 .534 .978

Overcast .616 .466 .022

RMSD .015

BIAS .013

were extended to lines and areas by means of Monte Carlo simulation. The Boehm
Sawtooth Wave (BSW) model was used in the simulation procedure because it is

simple, fast, and has a realistic spatial-correlation function. The procedure
was to use the model to generate 25, 000 maps for each of twelve different-sized

_ square areas and lines. Subsequently, probability distributions were approxima-
ted at selected threshold values, and the results were put in graphical form.

From these graphs, the empirical solutions were determined.

These results are approximate, depending upon the effectiveness of the BSW,
and the degree of accuracy of the Monte Carlo process, the smoothed curves, and

* the fit of the equations. The final model must be tested over a period of time to
determine how well it works and to determine its strengths and weaknesses. One
such test would be to measure its ability to tolerate climatic differences within a
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Table 10. BSW-Model Probability Estimates of Cloud Presence,
Overhead, Along a Line of Travel, for Bedford, Mass., January,
1200-1400 LST

Fraction of Cumulative Frequencies
line with
cloud 10km 100 km 500 km

0 .309 .150 .004

.1 .314 .183 .019

.2 .321 .228 .048

.3 .326 .254 .100

.4 .333 .293 .175

.5 .340 .332 .269

.6 .347 .372 .387

.7 .353 .418 .522

.8 .359 .462 .666

.9 .366 .511 .803

1.0 .371 .561 .921

Complete
Cover .629 .439 .079

region. A question to be answered is: To what extent can one scale distance

parameter be used before the model will no longr work? This, as well as other

questions, will be answered through research, application and experience.

Finally, the challenge still remains to solve the areal and lineal coverage

problem analytically. This solution would provide a basis upon which to judge

the current results. If the true solution is unduly complicated, and if the current

work is reasonably accurate, it might be desirable, or even necessary, to continue

to use these results for programming and practical applications.
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Appendix A

Derivation of BSW Model Correlation Coefficient

Purpose: To find the correlation coefficient (cc), p (a), in the BSW-model as

a function of the standardized distance (s) between two points in the field.

Because the equivalent normal deviate (END) has mean zero and variance

one, the correlation coefficient (p ) between two END's (y, y') is given by

, py = E(yy'). (Al)

The correlation coefficient (p ) between the phases (x. x I) of a single wave

formation, at two randomly selected points, distance (s) apart, is given by

E(xx') - 2

PX ~ 2 2
x

where E(xx') is the covariance

i is the mean, for both x and x', and

x is the standard deviation.

In the BSW-model, i - 1/2, ax = 1/12.

As given in the text, the result of having N wave formations in the field is to

produce N values of x at each point in the field, to give the END (y)
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oxN i=1

Between two points, where the END's are y and y'

SN 1 1
=y E(yy') -N. E I- , i - 1: xii

• N N

E , .T 2 2 (A4)a Ox2  N 2

But, as seen from Eq. A2 above,

E(xix.') = P .a2 +i2 wheni = j (A5a)

* and, through independence of the wave formations,

E(xix.,) 2 when i 4 j (A5b)

N 1 2 2 N-1 2 2
Hence, P - (P + ) + -. I''1--i.. e ce y = - 2 IN N "x

x

which reduces to py = Px and the following derivation for (A)

P is admissable for p

Without loss of generality, we can let the wavelength (A) be the unit distance,

* and limit the discussion to one formation of waves (Figure Al). oriented east-

west, and find the covariance (Exx') between two points separated by distance (s)

in the U, V-field.

V'. Corresponding to the two degrees of freedom for each wave formation, we

choose the two points by randomly locating the first point along the U-axis at the

wave-phase distance x) from the origin, and the second point on a circle of ra-

dius (s), centered on the first point, with random angle (0) from the U-axis. The

limits of variation of x and 0 are

' 48
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Figure Al. Diagram for Derivation of p(s) 0rs 1l

o r. z . (A7)

(Note: While 6 should vary from 0 to 2 7r, the effect on the convariance is re-

peated in the region 7r < 0 r. 2 7r. )

The wave-phase (x') at the second point is given by

x x +s cos 0 + 6 (A8)

where 0, ± 1. ± 2, etc., depending in which wave the second point is located.

The exercise is now narrowed down to finding an expression for the covari-

ance, E(xx).

Within the prescribed limits of integration
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E(xx') = J J x(x+s cos 0 + )dxd0 (A 9)
X=0 00

or, 7r. E(xx 1) = ~xdxdt9 + sf Ix cos 0 dxdO

0 0

So far

IT

7r. E(xx 1)=!! Jx6f0 (AO

*For 0~ :r s: 1,

1-x
6-1 for 0 9 0 0 r where 0 =cos- -

0 for 0 r < 0 !g 7r Ge where OA =cos -
s

I1 for 7rT- 0~ !C O .

- d -Hence,

7r. E(xx') =+ (-) xdx dO + (1) fxdx JdO
3 I If

%which reduces to x=- 00 0
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-x
3 1 B-f.E('- f xdx. {Coo,- i+' xdx -,

xfl-s x=O r

1. I-x} 1 1-x
, f (1-x)d(1-x) I Cos -  + fd(1-x)cos1
Sx=I-s S S=-

XMI- xzl-s

x-. 4 f~ -I

+ f x XCOS - dx.

x=O s

. Replacing x with z 1 - x,

0 0 s"..- f os lz 1 _lx

r.E(xx')=-f zdz cos +f dz. cos - + fx cos - dx
3 Z=s .=s 8s = s

7r=S x =
B B

+2j x Cos - dx- cos - dx.

x=O s Xs

These integrals are readily found in tables of integrals to give, finally

-, 2

ir. x'),-+ s.
3 

4)

Hence, P - 4__(3 __

x

and, for the BSW-model,

12 2
Px 1 -- s +3 s. (All)

Since this cc is the same for the y-values, and is found in terms of s, we use

the symbol P(s). and thus
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p(s) I -s +3 s2 .
7r

For < s s 2 (see Figure A2),

V..

:!000-

.•

Figure A2. Diagram for Derivation of P(s) for I a r 2

-- 2for 9 ! where cos 1 2-

s

1-x

--1 for 9~~9~ ~where 2 os I

0 S

I x
= 0 for 0 2' < -0 wh ere 3 = cos 

- -
s

= Ifor r - 03' 0 i 4 where 4 o - 1

m s

=2 for r- 3 4  =!os" s7
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Returning to Eq. (AI10)

1 01" f f d
7r.E(xx') = -+(-2) xdx dO3 3

x=2-s 0=0

1 '2 2-s 02

+(-1) f xdx f dO +-1) f xdxf dO
x=2-s 0 01 xf0 0 =0

+ (terms equal to zero when 6 = 0)

1 r 1 7r.-0 4
+(1)xfxdx f dO +(1) J xdx J dO

= r-O 3 x=O 0 Z 7r- 03

S+ (2) f1xdx dO ..
0=ff1"- 04t

The work involved in solution of these integrals is straightforward but vol-

uminous. The end product is

7r 7r2 1~ 1 L
7r.E(xx' =-+-s - s+2 Cos- 1

34 s

and gives

Px (I -s+3 s2)+ {cos1Pr 7r I

which, as before, is symbolized as P(s).

In summary,

12 s2

p(s) fI --- s+3 a for 0 s I
if

(I1 s+3s 24 s -1 V-_1 forl< as 2. I

ir s %
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Appendix B

Estimating the Probability of Fractional

Coverage by Computer

Problem: By computer, using the B3SW-model, find the probability P(y ;F, z)
0

that a weather condition will be exceeded in no more than a certain fraction of an

area or line.

Given: X = threshold value of weather parameter not to be exceeded

P 0 ' = single-point cumulative probability (1-P 0 ) of the occurrence
of x

A or S' = the area (kmn) or line (kin) in question

F/10 = the fraction of A or s' in which X may be exceeded

r = the model parameter, scale distance (kin)

Procedure:

Step 1. Calculate the equivalent normal deviate (END) (yo) of Pol using the

National Bureau of Standards (NBS) formula as follows:

ao + all

YO kt 2 2 (B 1)

1+b It+b 2 t /

where k = -1, t F n- when P 0 5 1/2

(P'
0
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. -114
k .k I, t A n when Po' > 1/2

. (1 -Po ,)2

1 c .003

a = 2. 30753 bI = .99229

al = .27061 b2 = .04481

S. Step 2. Calculate z by entering vA or S' and r into Eq. (6).

Step 3. Enter y0 , F, and z into Eq. (8) for the areal case and Eq. (9) for the

lineal case. The expressions, conditions, and constants for these equations are

shown in Tables 1-5, as explained in Section 6. The answer will be given in

. terms of the END value, y'.

Step 4. Calculate P(yo;F, z) using the NBS formula as follows:

2.9.

A--ni+c 3 y-c -) (B2)
P (YO;F, 2(1+c 1 IY' +c2 y 2 +c3 Y 3+c '4)4

where = 0, m = 1 for y'< 0

A = 1, in = -I for y' 0

ct 1 . 0002 5

C = 196854 C3 = .000344

C2 = .115194 C4 = .019527

2 4

"-"9

"i's
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Appendix C
Estimating Scale Distance by Computer

Problem: By computer, using the BSW-model, compute the parameter, N

scale distance (r kin).

Given: X = threshold value of weather parameter not to be exceeded

Po 0 z single-point cumulative probability (1-P ) of the occur-
rence of x

A = the area (km 2 ) in question

F/10 = the fraction of A in which X may be exceeded

P(Yo;F, z) = the probability that x will be exceeded in no more than I
F/10 of A

Discussion: Eq. (8) was derived to 'solve for P(y ;F. z) given P ', A, F and

r (see Appendix B). To find r when it is the unknown, a system of trial and error

is used. The equations in Table 1 are given in terms of z, which has a one-to-one

relation with r when A is known. The procedure, then, is to begin with the trial

z-value of zi = -1, and increase zi gradually in stages of Az until an accurate es-

timate of the correct z-value is found. The smaller Az is, the smaller the error T"

(f) will be for the estimate of z where icl <Az. If there are two solutions for z,

this procedure will yield the lesser value (see Section 7). Other iterative meth-

ods, available from any good textbook on numerical analysis, may be used as

well.

Procedure:

Step 1. Calculate the equivalent normal deviate (END) (yo) of P using the
0 0

~.-
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National Bureau of Standards (NBS) formula [Appendix B, Eq. (BI)].

Step 2. Calculate the END (y') of P(y 0 ;F, z) using the NBS formula.

-6 Step 3. Initialize z. -1 and Az.

Step 4. Enter y0 , F, and z, into Eq. (8). The expressions, conditions, and

constants for this equation are shown in Tables 1-3, as explained in Section 6. The

answer will be an interim value yi' that is to be compared with y'.

Step 5. Calculate Ay' = y' - y1 '.
Step 6. Increase z i by Az and return to Step 4 until Ay' becomes negative, or

until z i 
= 8.

Step 7. If Ay' is negative, z is estimated by

y '-Y I (i)

z = z. - Az + e. where fle - Az.
. ( y I( z i - ,Az )-YllZ i ) /

a If y' = 0. z i = z. If Zi = 8, there is no solution within the bounds of the graphs.

Step 8. Enter z and rA f st into Eq. (7) to obtain the estimate for r.

a'...

4".T
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